Not only is it a verb with a touch of a noun but it is also a
true eponym. Matheron had written in 1960 what he himself had called Krigeage
d’un panneau rectangulaire par sa périphérie. Nowadays it is posted as Note
géostatistique No 28. An anthology of Matheron’s life and time, and of his
creation of geostatistics, is posted on a massive website. Danie G Krige had put
together a Preface to David’s 1977 Geostatistical Ore Reserve Estimation. References
to Krige pop up on many pages. Journel’s 1978 Mining Geostatistics, too, refers
not only to D G Krige but also to the zero kriging variance.
Geostatistical software made Bre-X’s bogus grades and
Busang’s barren rock look like a massive gold resource. So why had geostatistics
been hailed as a new science in the 1970s. The Bre-X scam was well on its way when geostatisticians
got together to praise David’s 1977 Geostatistical Ore Reserve Estimation. He was
praised at a celebration called Geostatistics for the Next Century at Montreal
on June 3-5, 1993. My take on The Properties of Variances clashed with the celebrations
at McGill University. What applied statistics did do is prove that the
intrinsic variability of Bre-X’s gold was statistically identical to zero. How
about that? The geostatocracy is still poised in 2012 to assume, krige,
smooth, and rig the rules of applied statistics with impunity.
David’s 1977 textbook displayed his tenuous grasp of applied
statistics. The author points on page 33 of Chapter 2 to what he calls “the
famous central limit theorem”. On page 286 in Figure 203 he shows how to derive
a set of sixteen (16) “famous central limit theorems” from the same set of nine
(9) holes. Next, he points out on this page, “Writing all the necessary
covariances for that system of equations is a good test to find out whether one
really understands geostatistics”. Counting degrees of freedom would have shown
that the author of the first textbook on geostatistics did grasp applied
statistics.
It is simple to verify spatial dependence between
measured values in an ordered set by applying Fisher’s F-test to the variance
of the set and the first variance term of the ordered set. The F-test requires
that degrees of freedom be counted. Stanford’s Journel claims that spatial
dependence between measured values may be assumed. For crying out loud! He did
so in his letter to JMG’s Editor. Now how’s that for a nouveau science! Surely,
spatial dependence in sample spaces should be proved beyond reasonable doubt. It
took but two steps to go from goofy geostatistics to a genuine fraud. The first
step was to strip the variance off the distance-weighted average. The second
step was to call a kriged estimate what had once been a distance-weighted
average with a variance. Now that’s simple comme bonjour, n’est ce pas? Kriging
is a stacked game of chance. Thou shall not krige when scientific integrity
matters!
Mineral Inventory Studies of Precious Metal Deposits in
British Columbia is one work of geostatistical fiction that I have kept on
file. The study that peeked my interest most of all was Ordinary Block Kriging
with Geological Control, A Practical Approach to Estimating Mineral Inventory,
Nickel Plate Mine, Hedley, British Columbia. I did so simply because primary
data are given. The authors of this study were A J Sinclair et al. It hit the
spotlight on June 3-5, 1993 when “Geostatistics for the Next Century” was
hailed for no reason whatsoever!
Dr A J Sinclair, Professor Emeritus (Geological
Engineering), was 2000-2001 recipient of a distinguished lecturer award. Sinclair
talked about “Geology and data analysis: essential components of high quality resource/reserve
estimation”. He talked across the country
in both official languages. His paper on Ordinary Block Kriging with Geological
Control, A Practical Approach to Estimating Mineral Inventory, Nickel Plate
Mine, Hedley, BC was presented when David was praised at McGill in June 1993. I
applied Fisher F-test to test for spatial dependence.
Fisher's F-test for spatial dependence
The set of
production data didn’t display a significant degree of spatial dependence. Neither
did the set of ordinary block kriging data. Bartlett’s chi-squared test would
have shown significant discrepancies not only between variances of sets but
also between first variance terms of ordered sets.
95% Confidence limits for arithmetic
means
The central values in this table are arithmetic means. Confidence intervals and ranges are derived in Excel spreadsheet files. Shortly, a link to both files will be be posted.
The Society for Mining, Metallurgy, and Exploration
published in Volume 308 Transactions 2000 a reviewed paper entitled Borehole
statistics with spreadsheet software. The paper shows how to fingerprint
boreholes. Its reviewer expected it would “stir up a hornets’ nest” but it
never did! This paper underpins a report in which confidence limits for a large gold
reserve had been derived. It was submitted to Barrick Gold early in 1998.
No comments:
Post a Comment