Here are a few notes on SAGD Reservoir Characterization Using Geostat: Application of the Athabasca Oil Sands, Alberta Canada. Its authors are Jason A McLennan and Clayton V Deutsch. The latter may well remember that once upon a time at some event we shook hands. What he does not remember is one-to-one correspondence between functions and variances. It is impossible to score a passing grade on Statistics 101 by stripping the variance off the distance-weighted averages AKA kriged estimate! So I decided to look up what Clayton V Deutsch had been taught where, when, why and by whom. He earned a BSc in Mining Engineering at the University of Alberta in April 1985. Next, he got a Mac in Applied Earth Sciences (Geostatistics) at Stanford University in April 1987. Finally, he was granted his PhD in Applied Earth Sciences (Geostatistics) at Stanford University in June 1992. Now how’s that for kriging out loud!
I had mailed on November 14, 1990 a copy of Sampling and Weighing of Bulk Solids to Professor Dr R Ehrlich, Editor, Mathematical Geology. Here’s what he wrote on October 26, 1992: “Your feeling that geostatistics is invalid might be correct”. Attached to his letter was Professor Dr A G Journel’s response. The Editor’s letter and Journel’s response are posted on my website. Journel pointed out,”I’ll leave it to you to decide whether this letter should be sent to J W Merks; however, I strongly feel that Math Geology has had more than its share of detracting invectives”. Journel’s circular logic was a brazen tour de force.
I want to show what McLennan and Deutsch didn’t do in this SAGD study before putting in plain words who set the stage for Markov chains, when, where and why.
Top Surface and Bottom Surface: Realization 50
These figures show Northing and Easting coordinates and sets of measured values for top and bottom surfaces. What comes to mind when I look at such plots are door-to-door peddlers of days gone by. They would walk such that the shortest distance is covered when each and every door is called on but once. Today’s door-to-door peddlers are into saving souls. And I’m into peddling on-line. My eBook on Sampling and Weighing of Bulk Solids has been posted. Foremost on my mind is Metrology in Mining and Metallurgy. But I tend to slow down a bit when voodoo science drives me up a hanging wall!
SAGD Reservoir Characterization with Applied Statistics
A spreadsheet template with SAGD statistics will be posted on geostatscam.com. In due course I’ll show how to derive the mass of oil in each block and the variance of that mass. The same method can be applied not only to in-situ ores and oils but also to mined ores and oils. All it takes is to put the additive property of variances to work. Neither Markovian chains nor Matheronian geostatistics have a role to play in mineral exploration and mining.
David’s 1977 Geostatistical Ore Reserve Estimation shows in Figure 203 on page 286 a set of sixteen (16) points. Each point is a function of the same set of nine (9) holes. One-to-one correspondence between functions and variances dictates that each point does have its own variance. David on page 323 points to the infinite set of simulated values and ponders how to make it smaller. Journel and Huibregts 1978 Mining Geostatistics on page 308 points to a zero kriging variance. None of these geostatistocrats got into counting degrees of freedom!
Here’s what Dr Isobel Clark acknowledged in the Preface to her 1979 Practical Geostatistics, “And finally to AndrĂ© Journel and others at Fontainebleau who taught me I know about the theory of the Theory of Regionalized Variables". It was Dr Clark who taught that each distance-weighted average AKA kriged estimate does indeed have its own variance. Stanford’s Journel didn’t know simply because Matheron didn't know. It was Matheronian thinking that has messed up ore and oil reserve estimation all over the world. A few mining giants are sold on Markov chains. Canadian regulators do not know which end of a Markov chain is up!
No comments:
Post a Comment